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Abstract. The well-known Eneström-Kakeya theorem states
that polynomial p(z) =

∑n
ν=0 aνz

ν , where 0 ≤ a0 ≤ a1 ≤ · · · ≤
an, has all of its (complex) zeros in |z| ≤ 1. Many generalizations
of this result exist in the literature. In this paper, we extend
one such result to the quaternionic setting and state one of the
possible corollaries.
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Introduction

The classical Eneström-Kakeya theorem concerns the location of the complex
zeros of a real polynomial with nonnegative monotone coefficients. It was
independently proved by Gustav Eneström in 1893 [3] and Sōichi Kakeya in
1912 [8].

Theorem 1 Eneström-Kakeya Theorem. If p(z) =
∑n

ν=0 aνz
ν is a

polynomial of degree n (where z is a complex variable) with real coefficients
satisfying 0 ≤ a0 ≤ a1 ≤ · · · ≤ an, then all the zeros of p lie in |z| ≤ 1.

A huge number of generalizations of the Eneström-Kakeya theorem exist.
Most of them involve weakening the condition on the coefficients. For a
survey of such results up to 2014, see [5]. For example, Gardner and Govil
[4], inspired by a result of Aziz and Mohammad [1] for power series, presented
the following statement [4, Theorem 8].

Theorem 2 Let p(z) =
n∑
ν=0

aνz
ν be a polynomial of degree n. If Re aν = αν

and Im aν = βν for ν = 0, 1, 2, . . . , n, an 6= 0 and for some `,m and t ≥ 0,

α0 ≤ tα1 ≤ t2α2 ≤ · · · ≤ t`α` ≥ t`+1α`+1 ≥ · · · ≥ tnαn,
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β0 ≤ tβ1 ≤ t2β2 ≤ · · · ≤ tmβm ≥ tm+1βm+1 ≥ · · · ≥ tnβn,

then p(z) has all its zeros in R1 ≤ |z| ≤ R2, where

R1 = min{t|a0|/(2(t`α` + tmβm)− (α0 + β0)− tn(αn + βn − |an|)), t}

and

R2 = max

{
1

|an|

(
|a0|tn+1 − tn−1(α0 + β0)− t(αn + βn)

+(t2 + 1)(tn−`−1α` + tn−m−1βm)

+(t2 − 1)

(
`−1∑
j=1

tn−j−1αj +
m−1∑
j=1

tn−m−1βm

)

+(1− t2)

(
n−1∑
j=`+1

tn−j−1αj +
n−1∑

j=m+1

tn−j−1βj

))
,
1

t

}

The quaternions, denoted H in honor of Rowan William Hamilton who
introduced them in 1843, are defined as H = {α+βi+γj+δk | α, β, γ, δ ∈ R}
where i2 = j2 = k2 = ijk = −1. They are the standard example of a
noncommutative division ring. The conjugate of quaternion q = α + βi +
γj + δk is q = α − βi − γj − δk and the modulus of q is |q| =

√
qq =√

α2 + β2 + γ2 + δ2. Notice that C = {α + βi | α, β ∈ R, i2 = −1} is
a sub-division ring of H. Since H lacks commutivity, the factor theorem
does not hold. This leads to a somewhat complicated behavior of the zeros
of a polynomial of a quaternionic variable. For example, the polynomial
q2 + 1 has uncountably many zeros, namely, every q = βi + γj + δk with
β2 + γ2 + δ2 = 1. Thus by giving results on the location of the quaternionic
zeros of a polynomial, we include all (finitely many) complex zeros and
potentially infinitely many more quaternionic zeros.

The Eneström-Kakeya theorem has recently been extended to polynomi-
als of a quaternionic variable as follows [2].

Theorem 3 If p(q) =
n∑
ν=0

qνaν is a polynomial of degree n (where q is a

quaternionic variable) with real coefficients satisfying 0 ≤ a0 ≤ a1 ≤ · · · ≤
an, then all the zeros of p lie in |q| ≤ 1.

Since the complex numbers are a subset of the quaternions, this result
implies Theorem 1. The purpose of this paper is to extend Theorem 2 to
the quaternionic setting.
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1 Some Preliminary Results Concerning Func-

tions of a Quaternionic Variable

An analytic theory of functions of a quaternionic variable has recently been
developed [6, 7]. In particular, Gentilli and Struppa [7] introduced a maxi-
mum modulus theorem for regular functions, a class that includes convergent
power series and polynomials (see their Remark 1.3 for a more precise defi-
nition of “regular”). They proved the following.

Theorem 4 Let B = B(0, r) be an open ball in H with center 0 and radius
r > 0, and let f : B −→ H be a regular function. If |f | has a maximum at a
point a ∈ B, then f is constant on B.

We can now use Theorem 4 to extend Schwarz’s lemma from the complex
setting (see [10]) to the quaternionic setting.

Lemma 1 Let f(q) =
∞∑
ν=0

qνaν for |q| ≤ R, where the coefficients aν, 0 ≤

ν <∞, and variable q are quaternions. Suppose f(0) = a0 = 0. Then

|f(q)| ≤ M |q|
R

for any |q| ≤ R,

where M = max|q|=R |f(q)|.

Proof. Define

g(q) =
∞∑
ν=1

qν−1aν =

{
q−1f(q) =

∑∞
ν=1 q

ν−1aν , for q 6= 0,

a1, for q = 0.

Let R > 0 and M = max|q|=R |f(q)|. Then

max
|q|=R
|g(q)| = max

|q|=R

∣∣∣∣f(q)

q

∣∣∣∣ =
M

R
.

By Theorem 4 applied to g, |g(q)| ≤ M/R for |q| = r ≤ R. Hence |g(q)| =
|q−1f(q)| ≤M/R for 0 < |q| = r ≤ R, or |f(q)| ≤M |q|/R for 0 < |q| = r ≤
R. Since f(0) = 0, the result also holds for q = 0. �

Let f(q) =
∑n

i=0 q
iai and g(q) =

∑m
j=0 q

jbj be two polynomials. The

regular product of f and g is the polynomial (f ∗ g)(q) =
∑mn

k=0 q
kck, where

ck =
∑k

i=0 q
iaibk−i for all k [7]. The absence of commutivity in the quater-

nions has some unexpected implications (for example, the factor theorem
does not hold as mentioned above). In particular, we have the next result
concerning the zeros of the regular product of two polynomials [9].

Theorem 5 Let f and g be quaternionic polynomials. Then (f ∗ g)(q0) = 0
if and only if f(q0) = 0 or (f(q0) 6= 0 implies g(f(q0)

−1q0f(q0)) = 0).
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2 Statement and Proof of the Main Result

Our main result is the following:

Theorem 6 Let p(q) =
∑n

ν=0 q
νaν be a polynomial of degree n with quater-

nionic coefficients aν = αν +βν i +γνj + δνk, ν = 0, 1, 2, . . . , n. If an 6= 0 and
for some `, m, r, s and t ≥ 0, it holds

α0 ≤ tα1 ≤ t2α2 ≤ · · · ≤ t`α` ≥ t`+1α`+1 ≥ · · · ≥ tnαn,

β0 ≤ tβ1 ≤ t2β2 ≤ · · · ≤ tmβm ≥ tm+1βm+1 ≥ · · · ≥ tnβn,

γ0 ≤ tγ1 ≤ t2γ2 ≤ · · · ≤ trγr ≥ tr+1γr+1 ≥ · · · ≥ tnγn,

δ0 ≤ tδ1 ≤ t2δ2 ≤ · · · ≤ tsδs ≥ ts+1δs+1 ≥ · · · ≥ tnδn,

then p(q) has all its zeroes in R1 ≤ |q| ≤ R2, where

R1 = min{t|a0|/(2(t`α` + tmβm + trγr + tsδs)− (α0 + β0 + γ0 + δ0)

−tn(αn + βn + γn + δn − |an|)), t}

and

R2 = max

{
1

|an|

(
|a0|tn+1 − tn−1(α0 + β0 + γ0 + δ0)− t(αn + βn + γn + δn)

+(t2 + 1)(tn−`−1α` + tn−m−1βm + tn−r−1γr + tn−s−1δs)

+(t2 − 1)

( `−1∑
j=1

tn−j−1αj +
m−1∑
j=1

tn−j−1βj +
r−1∑
j=1

tn−j−1γj

+
s−1∑
j=1

tn−j−1δj

)
+ (1− t2)

( n−1∑
j=`+1

tn−j−1αj +
n−1∑

j=m+1

tn−j−1βj

+
n−1∑
j=r+1

tn−j−1γj +
n−1∑
j=s+1

tn−j−1δj

))
,
1

t

}
.

Proof. Define P (q) by the equation

P (q) = p(q) ∗ (t− q)
= ta0 + (ta1 − a0)q + (ta2 − a1)q2 + · · ·+ (tan − an−1)qn − anqn+1

= ta0 +
n∑
j=1

(taj − aj−1)qj − anqn+1

= ta0 +G1(q),

where G1(q) =
∑n

j=1(taj−aj−1)qj−anqn+1. By Theorem 5, p(q)∗(t−q) = 0 if

and only if either p(q) = 0, or (p(q) 6= 0 implies p(q)−1qp(q)− t = 0). Notice
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that p(q)−1qp(q) − t = 0 is equivalent to p(q)−1qp(q) = t and if p(q) 6= 0,
this implies that q = t. Thus the only zeros of p(q) ∗ (t − q) are q = t and
the zeroes of p. For |q| = t, we have

|G1(q)| ≤
n∑
j=1

|taj − aj−1|tj + |an|tn+1

≤
n∑
j=1

|tαj − αj−1|tj +
n∑
j=1

|tβj − βj−1|tj

+
n∑
j=1

|tγj − γj−1|tj +
n∑
j=1

|tδj − δj−1|tj + |an|tn+1

=
∑̀
j=1

(tαj − αj−1)tj +
n∑

j=`+1

(αj−1 − tαj)tj

+
m∑
j=1

(tβj − βj−1)tj +
n∑

j=m+1

(βj−1 − tβj)tj

+
r∑
j=1

(tγj − γj−1)tj +
n∑

j=r+1

(γj−1 − tγj)tj

+
s∑
j=1

(tδj − δj−1)tj +
n∑

j=s+1

(δj−1 − tδj)tj + |an|tn+1

= −t(α0 + β0 + γ0 + δ0) + 2(t`+1α` + tm+1βm + tr+1γr + ts+1δs)

−tn+1(αn + βn + γn + δn − |an|) = M1.

Applying Lemma 1 to G1(q), we get

|G1| ≤
M1|q|
t

for |q| ≤ t,

which implies

|P (q)| = | − ta0 +G1(q)|
≥ t|a0| − |G1(q)|

≥ t|a0| −
M1|q|
t

for |q| ≤ t.

Therefore, if |q| < R1 = min{(t2|a0|/M1), t}, then P (q) 6= 0 and hence
p(q) 6= 0. Next we want to show that p(q) 6= 0 if |q| > R2. For this, we
consider once again

P (q) = p(q) ∗ (t− q) = ta0 +
n∑
j=1

(taj − aj−1)qj − anqn+1

= −anqn+1 +G2(q),
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where G2(q) = ta0 +
∑n

j=1(taj − aj−1)qj. Then∣∣∣∣qnG2

(
1

q

)∣∣∣∣ =

∣∣∣∣∣ta0qn +
n∑
j=1

(taj − aj−1)qn−j
∣∣∣∣∣ ,

and for |q| = t, we have∣∣∣∣qnG2

(
1

q

)∣∣∣∣ ≤ |a0|tn+1 +
n∑
j=1

|taj − aj−1|tn−j

≤ |a0|tn+1 +
n∑
j=1

|tαj − αj−1|tn−j +
n∑
j=1

|tβj − βj−1|tn−j

+
n∑
j=1

|tγj − γj−1|tn−j +
n∑
j=1

|tδj − δj−1|tn−j

= |a0|tn+1 − tn−1(α0 + β0 + γ0 + δ0)− t(αn + βn + γn + δn)

+(t2 + 1)(tn−`−1α` + tn−m−1βm + tn−r−1γr + tn−s−1δs)

+(t2 − 1)

( `−1∑
j=1

tn−j−1αj +
m−1∑
j=1

tn−j−1βj

+
r−1∑
j=1

tn−j−1γj +
s−1∑
j=1

tn−j−1δj

)

+(1− t2)
( n−1∑
j=`+1

tn−j−1αj +
n−1∑

j=m+1

tn−j−1βj

+
n−1∑
j=r+1

tn−j−1γj +
n−1∑
j=s+1

tn−j−1δj

)
= M2.

By Theorem 4, it follows that∣∣∣∣qnG2

(
1

q

)∣∣∣∣ ≤M2 for |q| ≤ t,

which implies, by replacing q with 1/q, that

|G2(q)| ≤M2|q|n for |q| ≥ 1

t
.

Hence,
|P (q)| = | − anqn+1 +G2(q)| ≥ |an||q|n+1 −M2|q|n

for |q| ≥ 1/t. Thus |P (q)| ≥ |q|n(|an||q| −M2). Therefore, if |q| > R2 =
max{M2/|an|, 1/t}, then P (q) 6= 0 and therefore p(q) 6= 0. The theorem is
proved. �
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Since the quaternionic zeros include all of the complex zeros, Theorem
6 generalizes Theorem 2. By adjusting the values of `, m, r, s, and t we
can extract a number of corollaries. For example, with ` = m = r = s = n
and t = 1 (that is, imposing a condition of monotonicity on the parts of the
coefficients) we get the next corollary.

Corollary 1 Let p(z) =
n∑
ν=0

aνq
ν , an 6= 0 and aν = αν + βν i + γνj + δνk,

ν = 0, 1, 2, . . . , n. If

α0 ≤ α1 ≤ · · · ≤ αn, β0 ≤ β1 ≤ · · · ≤ βn,

γ0 ≤ γ1 ≤ · · · ≤ γn, and δ0 ≤ δ1 ≤ · · · ≤ δn,

then p(z) has all its zeros in

|a0|
|an| − (α0 + β0 + γ0 + δ0) + (αn + βn + γn + δn)

≤ |z|

≤ |an| − (α0 + β0 + γ0 + δ0) + (αn + βn + γn + δn)

|an|
.

Corollary 1 is related to Theorem 9 of [2]; the outer radius of these two
results are the same but Corollary 1 also gives an inner radius of the zero
containing region.
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